Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yun-Cheng Cui,* Jia-Jun Wang, Guang-Bo Che, Chun-Bo Liu and Chuan-Bi Li

Department of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China

Correspondence e-mail: cuiyunchengjl@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 292 KMean $\sigma(\text{C}-\text{C}) = 0.011 \text{ Å}$ R factor = 0.071 wR factor = 0.235 Data-to-parameter ratio = 14.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography

All rights reserved

Received 30 April 2006

Accepted 19 June 2006

μ-Benzene-1,4-dicarboxylato-bis[aquachloro-(2-phenyl-1*H*-1,3,7,8-tetraazacyclopenta[*I*]phenanthrene)zinc(II)]

In the title compound, $[Zn_2(C_8H_4O_4)Cl_2(C_{19}H_{12}N_4)_2(H_2O)_2]$ or $[Zn_2(BDC)Cl_2(L)_2(H_2O)_2]$ (where BDC is benzene-1,4dicarboxylate and *L* is 2-phenyl-1*H*-1,3,7,8,-tetraaza-cyclopenta[*I*]phenanthrene), the two Zn^{II} atoms are bridged by the BDC ligand to form a dinuclear compound in which each Zn^{II} atom is five-coordinated by two N atoms from one *L* ligand, one chloride ion, and two O atoms, one from the BDC and one from the water molecule. The molecule is centrosymmetric. Neighbouring dinuclear complexes interact through π - π contacts to form stacks, leading to a two-dimensional supramolecular structure.

Comment

The synthesis and design of supramolecular complexes exhibiting novel structures and properties has provided exciting new prospects for chemists (Eddaoudi *et al.*, 2001). A common and successful approach to the preparation of supramolecular frameworks is *via* direct chemical combination of functional inorganic and organic components. 1,10-Phenanthroline (phen) and its derivatives are one type of important organic ligand widely used in the construction of metal-organic complexes. 2-Phenyl-1*H*-1,3,7,8,-tetraazacyclopenta[*l*]phenanthrene (*L*) is one such phen derivative and, to date, the chemistry of supramolecular architectures based on *L* has received little attention (Collins *et al.*, 1998). We present here a new compound [Zn₂(BDC)Cl₂(*L*)₂(H₂O)₂], (I), incorporating the *L* ligand (BDC is benzene-1,4-dicarboxylate).

Selected bond lengths and angles for (I) are given in Table 1. There is a centre of symmetry at the centre of the BDC ligand. In compound (I), the Zn^{II} atom is five-coordinated by two N atoms from one *L* ligand, one chlorine ion, and two O atoms from one BDC and one water molecule (Fig. 1). The two Zn^{II} atoms are bridged by the BDC ligand to form a dinuclear compound.

The water molecule, NH group, chloride ion and carboxylate O atoms form hydrogen bonds (Table 2).

Neighbouring dinuclear complexes interact through π - π contacts, leading to a two-dimensional supramolecular structure (Fig. 2). There are two types of π - π interactions: one

Figure 1

The molecular structure of (I), showing the atomic numbering scheme and displacement ellipsoids drawn at the 50% probability level. Unlabelled atoms are related to labelled atoms by (-x, 1-y, 1-z).

Figure 2

View of the two-dimensional supramolecular structure of (I), generated by intermolecular π - π interactions.

exists between two L ligands (ca 3.442 Å), while the other exists between the L and BDC ligands (ca 3.709 Å). It is clear that aromatic-aromatic interactions help to stabilize this and related architectures (Noveron et al., 2002).

Experimental

The L ligand was synthesized according to the reported method (Collins et al., 1998). Complex (I) was self-assembled from L, $ZnCl_2 H_2O$ and H_2BDC . A methanol solution (10 ml) of L (0.5 mmol) was added slowly to an aqueous solution (10 ml) of ZnCl₂·H₂O (0.5 mmol) and H₂BDC (1 mmol) with stirring. The resulting solution was filtered and the filtrate allowed to stand in air at room temperature for several days, yielding pale-yellow crystals of (I) (68% yield based on Zn).

Crystal data

[Zn₂(C₈H₄O₄)Cl₂(C₁₉H₁₂N₄)₂- $(H_2O)_2$] $M_r = 994.44$ Triclinic, $P\overline{1}$ a = 9.0702 (18) Å b = 9.1815 (18) Å c = 12.642 (3) Å $\alpha = 103.54 (3)^{\circ}$ $\beta = 98.01 \ (3)^{\circ}$

Data collection

Rigaku R-AXIS RAPID diffractometer ω scan Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.651, T_{\max} = 0.744$

 $\gamma = 100.49 \ (3)^{\circ}$ V = 988.0 (4) Å³ Z = 1 $D_x = 1.671 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation $\mu = 1.42 \text{ mm}^{-1}$ T = 292 (2) K Block, pale yellow $0.34 \times 0.30 \times 0.21 \text{ mm}$

9673 measured reflections 4441 independent reflections 2309 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.093$ $\theta_{\rm max} = 27.5^{\circ}$

Refinement

Refinement on F^2	H atoms treated by a mixture of
$R[F^2 > 2\sigma(F^2)] = 0.071$	independent and constrained
$wR(F^2) = 0.235$	refinement
S = 0.98	$w = 1/[\sigma^2(F_o^2) + (0.1295P)^2]$
4441 reflections	where $P = (F_0^2 + 2F_c^2)/3$
298 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta \rho_{\rm max} = 1.08 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.85 \text{ e} \text{ Å}^{-3}$

Table 1

Selected	geometric	parameters ((A, °).
	8	F	(,	

N1-Zn1	2.157 (5)	O1W-Zn1	2.084 (6)
N2-Zn1	2.088 (6)	Zn1-Cl1	2.275 (2)
O1-Zn1	2.051 (5)		
O1-Zn1-O1W	87.8 (2)	N2-Zn1-N1	78.2 (2)
O1-Zn1-N2	90.7 (2)	O1-Zn1-Cl1	99.75 (17)
O1W-Zn1-N2	127.5 (2)	O1W-Zn1-Cl1	117.30 (18)
O1-Zn1-N1	163.8 (2)	N2-Zn1-Cl1	114.64 (18)
O1W-Zn1-N1	89.7 (2)	N1-Zn1-Cl1	95.60 (17)

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1W - HW11 \cdots O2$ N3 - H3B · · · Cl1 ⁱ	0.84 (6) 0.81 (11)	1.96 (4) 2.57 (11)	2.769 (7) 3.264 (6)	160 (9) 144 (9)
Summerstan and a (i)	i 1 -			

Symmetry code: (i) x, y + 1, z.

All H atoms on C atoms were positioned geometrically and refined as riding, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{ea}(C)$. Aqua H atoms were located in difference Fourier maps and refined with O-H = 0.85 Å and $U_{iso}(H) = 1.2U_{eq}(O)$. The N-bound H atom was located in a difference Fourier map and refined freely, with $U_{iso}(H) =$ $1.2U_{eq}(N)$. The highest residual density peak was located 0.87 Å from atom H2.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Siemens, 1990); software used to prepare material for publication: SHELXL97.

The authors thank Jilin Normal University for supporting this work.

References

Collins, J. G., Sleeman, A. D., Aldrich-Wright, J. R., Greguric, I. & Hambley, T. W. (1998). Inorg. Chem. 37, 3133-3141.

Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Noveron, J. C., Lah, M. S., Sesto, R. E. D., Arif, A. M., Miller, J. S. & Stang, P. J. (2002). J. Am. Chem. Soc. 124, 6613-6625.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Siemens (1990). SHELXTL-Plus. Siemens Analytical X-ray Instrument Inc., Madison, Wisconsin, USA.